LINEAR ALGEBRA EXAM 3 FALL 2023

Name: Honor Code Statement:

Signature:

Directions: Complete all problems. Justify all answers/solutions. Calculators, cell-phones, texts, and notes are not permitted – the only permitted items to use are pens, pencils, rulers and erasers. Good luck!

(1) [10 points] For the given matrix A confirm that $\lambda = 3$ is an eigenvalue for A by finding a basis for the eigenspace corresponding to this eigenvalue.

	4	0	-1]
A =	3	0	3
	2	-2	5

Date: December 14, 2023.

LINEAR ALGEBRA EXAM 3 FALL 2023

- (2) The following statements are false. Give a counter-example to each. That is, give an instance where the hypothesis is true but the conclusion is false. Justify your counter-example.
 - (a) [5 points] The eigenvalues of a 2×2 matrix A are the entries on the main diagonal.

(b) [5 points] Every linearly independent set of size 2 in \mathbb{R}^3 is an orthogonal set.

(3) [10 points] Begin by finding the characteristic equation of the following matrix.

	2	0	-2	l
A =	1	3	2	
	0	0	3	

Next, confirm that $\lambda = 2$ and $\lambda = 3$ are eigenvalues of this matrix A by plugging these values into the equation you just obtained.

Now find a diagonalization of the matrix A.

(4) [5 points] Suppose that \mathbf{y} is orthogonal to \mathbf{u} and \mathbf{v} . Show that \mathbf{y} is orthogonal to every \mathbf{w} in Span $\{\mathbf{u}, \mathbf{v}\}$.

(5) [5 points] Find the distance between the two vectors
$$\mathbf{a} = \begin{bmatrix} 0 \\ -5 \\ 1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

FALL 2023

(6) [10 points] Confirm that the given set is an orthogonal set.

$$S = \{ \mathbf{u_1} = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}, \mathbf{u_2} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}, \mathbf{u_3} = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} \}$$

What theorem confirms that this set is a basis for \mathbb{R}^3 ?

Now write the following vector \mathbf{x} as a linear combination of the vectors in S without doing Gaussian Elimination.

$$\mathbf{x} = \begin{bmatrix} 5\\ -3\\ 1 \end{bmatrix}$$

(7) [5 points] Apply the Gram-Schmidt process to produce an orthogonal basis for the subspace spanned by the following set of vectors.

$$S = \{ \mathbf{a_1} = \begin{bmatrix} 4\\0\\2\\2 \end{bmatrix}, \mathbf{a_2} = \begin{bmatrix} 2\\2\\2\\2 \end{bmatrix} \}$$

6

	LINEAR ALGEBRA	EXAM 3	FALL 2023	7
(8)	[10 points] Find the least-square	s solution of $A\mathbf{x} =$	b where $A = \begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} \\ 0 & 0 \end{bmatrix}$	2],
	with a ₁ and a ₂ coming from the	previous problem a	and $\mathbf{b} = \begin{bmatrix} 0\\ 6 \end{bmatrix}$.	

LINEAR ALGEBRA EXAM 3 FALL 2023

(9) [10 points] Consider the small web below. Write down the link matrix A for this web. (Note that I'm asking for the link matrix A, not the modified link matrix M.) This link matrix will not yield a unique ranking. State what computation could be done to demonstrate this and what outcome of that computation must be found to hold true. Notice that I'm not asking for a qualitative argument about the web (i.e., it's disconnected); I'm asking for a computational way to demonstrate that the ranking is not unique. Please do not do the computation.

8